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Several Symmetric Inequalities of
Exponential Kind

Arkady Alt

In this article we suggest a general approach for proving certain sym-
metric inequalities of exponential kind in three variables which have ap-
peared in print at various times.

Theorem 1 Let n, m, p, and g be arbitrary nonnegative real numbers, such
that n > m and p > ¢q. Then for any positive real numbers a, b, c the
following inequality holds

a™tP 4 pntP 4 cntp a4+ b"+c* aP +bP 4P

amta 4 pmta f emta = gm 4 pm 4 em qd 4 b9 4 cd

Proof: Let () = o(x;a,b,c) = > a®; the inequality then becomes
cyclic

on+p) _ o(n) o)
o(m+q) = o(m) o(q

The inequality is essentially the same upon switching n and p or m and q, so
we may suppose that n > p and m > q. Then ¢ = min{n, m, p, q}.

Since the inequality to be proved is equivalent to o (n 4+ p) o (m) o (q) >
o (m + q) o (n) o (p) and we also have

o(n+p)o(m)o(q)

= Z a™tP. (Z a™t? 4 Z (a™b? + bmaq))

cyclic cyclic cyclic

— (Z an-l—p) (Z am+q) + Z (an+p + bn-HD) (ambq + bmaq)

cyclic cyclic cyclic

+ Z cntp (ambq + bmaq) ,

cyclic

with the analogous inequality holding for o (m + q) o (n) o (p), it therefore
suffices to prove the following two inequalities:

S (P 4 67HP) (@b 4 bmat) > S (@ 4 6 (anBP o+ baP)

cyclic cyclic
Z chtr (ambq + bmaq) > Z cmta (a"bp —+ b"ap) .
cyclic cyclic
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The first inequality above is settled by the following calculation:

Z (an+p + bn+p) (ambq + bmaq)
cyclic
_ Z (am+q + bm+q) (a"b" + b”ap)

cyclic

— Z (an+p+mbq 4 pntrtmga o gmpnteta | pmgnteta

gclic _ ntmtapp _ pntmtagp _ gnpmtpta _ bramtPta)

— Z ab? (an—l—m—i-p—q + pntmtp—a _ qntmpp—q bn+map—q)

cyclic
+ Z a™p™ (an+p+q—m + pntpta—m _ ptapn—m _ bp+qan—m)
cyclic
— Z adbd (an+m _ bn+m) (ap—q _ bp—q>
cyclic
+ 3 ambm (aPt — 6P (@7 — 5T > 0.
cyclic

Lastly, since

Z ctP (ambq —+ bmaq) = Z c? (a"+pbm + b""'pam) ;
cyclic cyclic

Z cmta (a™b? + b™a?) = Z c? (am+pb" + bm+pa") ,
cyclic cyclic

the second inequality that remains to be proved now follows immediately
from

Z P (an-l—pbm 4 pntrgm _ gmtepn bm'H’a")

cyclic

= Z a™b™mc? (an_m+p + pn—mtP _ gppn—m _ bpa"_m)
cyclic

= Z a™b™cl (ap — bp) (a"_m — b"_m) > 0. ]
cyclic

Corollary 1 Let k£ be a nonnegative integer and let p > q > 0. Then for any
positive real numbers a, b, and c the following inequality holds
a®? 4 kP 4 ckp > (a” + bP + cp>k
akq9 4 bka + cka — \ a9+ b9 + c4
Proof: We set n = kp, m = kq in Theorem 1 to obtain
olkp+p) _ olkp) o(p)
o(kg+q) — o(kq) o(q)
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and that yields the inequality
o((k+1)p) <o<p)>‘<’“+” . o(kp) (a(p))"“
o((k+1)q) \o(q) o(kq) \o(q))
which implies that
o (kp) (a(p))—’“ o o(t-p) (a(p))‘
o(kq) \o(q) ~ o(l-q9) \o(q)
and the inequality to be proved now follows. [ ]

Theorem 2 Let a, b, and c be positive real numbers. Then for any positive
integer n the function

a™ +b"™ + " a® \"
L,(x) = L,(xz;a,b,c) = Z ( >
an + bnm + cne oydlic b + c

is increasing in x on (0, 0©).

Proof: Let p, q € (0,00) and g < p. Due to the homogeneity of L,,(x; a, b, ¢)
with respecttoa, b, and ¢, it sufﬁces to prove the assertion when a+b+c = 1.

Using the expansion % = Z (k+" )tk we obtain
o(np)o(n
gmp)ond) ;) - Ln(q))
o(n)
= o(nq) Z — o(np) Z
cychc cycllc
k+n— k+n—
= o)y z( o 3 S (R 1T aren
n—1
cyclic k=0 cyclic k=0
X (k+n—
- > ( Y (emayott + np) ~ o (up)a (s + na)
—o n—1
_ Z (k: +n — 1> Z (ak:—|—npbnq + anqbk—‘,-np _ ak—i—nqbnp _ anpbk—l—nq)
= n—1 cyclic
X /(k+n— 1> Z a _ _
- Z a™ipnd (gnP—a) _ pr(p—a) (ak — bk) > 0,
= ( n—1 cyclic ( )

since (a™(®P~? — pn(P=9)) (gk — bk) > 0 for any nonnegative integer k. =

Corollary 2 For any positive real numbers a, b, ¢, » and any positive numbers
p and q such that ¢ < r < p the following inequality holds

Z( +cr>n—a(m)z< +cr>nfa(ip)2($>n'

cyclic cyclic cyclic

G(nq)
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Proof: Since Ly, (xz;a”,b",c") is increasing in x and ¢ < r < p, we have
L (g;a",b",d‘) < Lnp(1;a",b%,¢") < Ln ( ca”, b, ’”) ,
which is equivalent to the inequality to be proved. [ ]

By the results of Corollary 1 and Corollary 2 we obtain successively

1 af )n 1 < a” )n
—_— < ;
o(ngq) c%c(b" +c - o(nr) c%c br 4+ ¢
S(5e)
cyclic b" -'; cr _ > U(nr) > (U(nr) )
)3 ( a ) o(nq) o(nq)
cyclic b" +c”

and similarly we obtain

cyzcl;c<b’"ic") s o) o <ZE1:;>"

S(pte) 7™

cyclic

It follows that for any positive real numbers a, b, ¢, r and any positive real
numbers p, q such that ¢ < » < p, the following inequality holds

a"1<q> 2 (bi)n = a"1<r> 2 (bi)n = a"1<p> 2 (#)n

cyclic cyclic cyclic

Corollary 3 Let a, b, ¢ be positive real numbers and let

a+b+c a® + b*
F(x) = F(x;a,b,c) = ,
(@) = F(zia,b,c) am+bz+cm§c P
1 bm €T
E(x) = E(x;a,b,c) = Z a —I—c).
a® _|_b:c +c” cyclic b—l—C

Then F(x) and E(x) are each decreasing on (0, co).
Proof: We have

Li(x) =

o(1l o(x o(1 b + c* a+b+c
R )

hence, F(x) is decreasing on (0, co) because L (x) is increasing on (0, co)
by Theorem 2. Straightforward calculations show that E(z) = F(z) — 2,
hence E(x) is also decreasing on (0, co). ]

cyclic cyclic cyclic
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We now apply the preceding results to obtain some generalizations of
various problems.

Problem For any positive real numbers a, b, ¢, r and any positive real num-
bers p, q such that ¢ < r < p prove the following inequalities:

1 P 4 bP 3 1 9+ b?
e r” < < yLEr.
U(p) cyclic a’ + b U(r) U(q) cyclic ar + b
1 T (bP D 1 s q bd
Za( +C)§1§ Za(a—i— ) @)
U(p ) cyclic b t+c” O'(q) cyclic a” + b

Solution: We have F(g;a’",b’“,c") < F(1;a7,b",c") < F(g;a’",b",c’") by

Corollary 2, and since F'(1;a",b",c") = 3 the first inequality follows.
Similarly, E(g;a’",b’",c") < E(13a7,b7,c") < E(g;a’“,b’",c’“) and

since E(1;a",b",c") = 1 the second inequality follows. [ ]

2 2
Inequality (1) is a generalization of the inequality > £ +b 30(2)

cyclic at+b — 0(1)
in [2], and also a generalization of the inequality in [3].
p
Inequality (2) generalizes the inequality > 2 (y + 2) > x4+ y+ z,

cyclic yr + 2P
for positive z, y, z, and p > 1, which is Peter Woo’s generalization of the
inequality in [4] (see the commentary on p. 180). Furthermore, by using
the rightmost relation of Inequality (2) we can obtain a generalization of the
inequality > a> atbte

cyclic b +cr

in [4] (again, see the commentary on p. 180). Namely: for any positive real
numbers a, b, ¢, p, and q the following inequality holds

, for A > 0, suggested by Walther Janous

P+aq 9 4 p9 q
Z b: P 2 e ' 3)
cyclic tec 2
aPt4 (bq + Cq) 2qP 14

Proof: The inequality T — holds since simple manipula-

4} cpte — pP f ¢
tions show that it is equivalent to (b7 —c?) (b? —cP) > 0, and from inequality

P+q(pa q
(2) it follows that 3~ a? T (b7 A+ ) > a? + b? + 9, hence,

cydlic bp+ta 4 cpta —
Z aPta S 1 aPt4 (b9 + c9) S a? + b? + ¢4
= o + 4 sl ’
cyclic bp t+cP 2 cyclic brra + cPra 2

which proves inequality (3).
2 n
In [1] the inequality 3 <a267+b2> > 3 (

cyclic cyclic
The next theorem offers a generalization.

c n
ot b) was suggested.
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Theorem 3 Let n be a positive integer and a, b, ¢ be positive real numbers.

T

Then G(z) = G,(z;a,b,c) = > <07) is increasing on (0, co).

cyclic a® + b®
a”® b” c”
Proof: Letp > q > 0 and let A, = @)’ B, = @)’ and C, = @
Then we obtain
AT A"
Gn(P) 2 Gulq) <= Y~ > )
cyclic (1 Ap) cyclic (1-Aq)
k+mn— ktn k4+n— otms
= ey (I ha e ot ay
cyclic k=0 cyclic k=0
k+n-—-1 kdn k+n-—1 htn
= Z( n—l)z.Ap ZZ(n—l)Z.Aq
k=1 cyclic k=1 cyclic
i(k—l—n—l)a’((k—l—n)p Z(k—i—n—l)a’((k—l—n)q)
— n—1 O'k+n(p) — n—1 g'k+n(q) !

and the last inequality above holds termwise by the result of Corollary 1. m

By applying the result of Theorem 3 to the terms of an infinite series
we obtain the following corollary.

Corollary 4 Let h(t) = Z h,t™, where each h,, is nonnegative and the series
=0
converges for ¢ > 0. Then for any positive real numbers a, b, c the function

Gr(xz;a,b,c) = > h (

cyclic

is increasing in x on .
am+b)s creasing in x on (0, co)
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